如图,正方形ABCD,正方形A1B1C1D1,正方形A2B2C2D2均位于第一象限内,它们的边平行于x轴或y轴,其中点A、A1 如图,正方形ABCD、正方形A 1 B 1 C 1 D 1 ...
设直线OA的解析式为y=kx,∵A(3,3)在直线上,∴3=3k,解得k=1,∴yOA=x,∵正方形ABCD的边长为1.∴B(2,3),∴C(2,4),设yOC=k1x,4=2k1,解得k1=2,∴yOC=2x,设A2(x,x),∴B2(x-a,x),∴C2(x-a,x+a),∴2(x-a)=x+a,x=3a,∴D(3a,4a).故选C.
(1)结论:若正方形AnBnCnDn的边长为n,则点Bn坐标为(2n,3n);
(2)延长C1B1交x轴于点M,延长D1A1交x轴于点N
设C2的坐标为(m,n),
∵点C2在直线ON上,∴n=2m,
∵正方形A2B2C2D2的边长为a,∴B2的坐标为(m,n-a),A2的坐标为(m+a,n-a),
∵点A2在直线OM上,则m+a=n-a,则n=m+2a,
∴2m=m+2a,解得m=2a,
则点B2的坐标为(2a,3a),
B(2,3)
C(2,4)
lOC:y=2x
设A2(x1,x1)
则C2(x1-a,x1+a)
x1+a=2*(x1-a)
x1=3a
∴A2(3a,3a)
D2(3a,4a)
lOA:y=x
B(2,3)
C(2,4)
lOC:y=2x
设A2(x1,x1)
则C2(x1-a,x1+a)
x1+a=2*(x1-a)
x1=3a
∴A2(3a,3a)
D2(3a,4a)
你是否需要了解?
如图在正方形abcda1b1c1d1
⑴ 设DA=a(,DC=b,DD1=c,则 DB1=a+b+c.A1B=D1C=b-c.DB1·A1B=(a+b+c)·(b-c)=b²-c²=0.DB1⊥A1B 同理,DB1⊥A1C.∴DB1⊥面A1BC1.DB1∈面A1B1CD.∴面A1B1CD⊥面A1BC1.⑵ 设O=DB1∩A1BC1,E是BC1中点,设AB=1.则BC1=√2,A1E=√2...
如图,在正方形ABCD-A1B1C1D1中,M 是AA1的中点,点N位于AB上, 1) 问...
1)连接B1N和BC1,设AA1=2,AN=x,NB=2-x,∵C1M^2+MN^2=BN^2+BC1^2,∴x=1\/2,AN:BN=(1\/2):(3\/2)=1:3 2)连接C1N,直线NC1与平面ABB1A1所成角即∠B1NC1,设AB=2 tan∠B1NC1=B1C1\/B1N=2*根号5\/5 1
如图,在正方形abcd–a1b1c1d1中,求bd与平面a1c1d所成角的余弦值_百度知...
连接BD、A1C1、上下的正方形的对角线交点O、O1,连接OO1、DO1 所求角就是角ODO1 设棱长为a,DO=1\/2BD=√2 \/2 a OO1=a O1D=√( DO^2+OO1^2) =√6 \/2 a 所以cos=DO\/O1D=√3 \/3
如图,已知正方形ABCD的面积是64平方厘米,顺次连接正方形ABCD四条边的...
正方形ABCD的面积是64平方厘米边长a0=8 a1=根号(a0^2\/2)=4根号2 a2=4 a3=2根号2 a4=2 an=a0\/(根号2)^n a30=a0\/(根号2)^30=8\/2^15=2^(-12)
将正方形ABCD绕中心O顺时针旋转角α得到正方形A1B1C1D1。如图1...
则∵O是两个正方形的中心,∴OA=OA1∠PA1O=∠PAO=45°∴∠AA1O=∠A1AO∴∠AA1O-∠PA1O=∠A1AO-∠PAO即∠AA1P=∠A1AP∴PA=PA1法二如图,作OE⊥A1D1,OF⊥AB,垂足分别为E,F则OE=OF,∠PFO=90°,∠PEO=90°在Rt△EOP和Rt△FOP中,∴△EOP≌△FOP∠EPO=∠FPO∵∠APE=∠A1...
如图,正方体ABCD-A1B1C1D1的棱长为a (1)求证 BD垂直面ACC1A1 (2)求...
解答:证明:(1)连AC,A1C1 ∵正方体AC1中,AA1⊥平面ABCD∴AA1⊥BD ∵正方形ABCD,AC⊥BD且AC∩AA1=A ∴BD⊥平面ACC1A1且E∈CC1∴A1E?平面ACC1A1∴BD⊥A1E (2)设AC∩BD=O,则O为BD的中点,连A1O,EO 由(1)得BD⊥平面A1ACC1∴BD⊥A1O,BD⊥EO ∴∠A1OE即为二面角A1-BD-E...
...在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0...
解:设正方形的面积分别为S1,S2…S2010,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=5,cot∠DAO=OAOD=12,∵tan∠BAA1=BA1AB=cot∠DAO,∴BA1=12AB=...
如图,在正方形ABCD-A1B1C1D1中,E为CC1的的中点,求证:平面A1BD垂直平面BE...
连结AC1、AB1。在正方体中,A1B垂直AB1且A1B垂直B1C1,而AB1交B1C1=B1,所以A1B垂直平面AB1C1。因为AC1在平面AB1C1内,所以AC1垂A1B。取BD的中点F,连结EF。由EB=ED可知,EF垂BD。在三角形ACC1中,EF\/\/AC1(中位线),所以,EF垂直A1B。因为BD交A1B=B,所以EF垂直平面A1BD。因...
如图,ABCD-A1B1C1D1为正方体,求证A1C垂直平面BC1D
分析:要证A1C⊥平面BC1D,只要在平面BC1D 中找到两条相交直线与A1C垂直即可,观察图形 找垂直关系.证明:连结AC,在正方形ABCD中,AC⊥BD,由正方体知AA1⊥平面AC,∴A1C在平面AC上的射影即为AC,∴A1C⊥BD,同理可证A1C⊥BC1,又BC1∩BD=B,∴A1C⊥平面BC1D 三...
如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第...
(1)a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=2a1=2,同理a3=2a2=(2)2a1=2,a4=2a3=(2)3a1=22;(2)由(1)结论可知:a2=2a1=2,a3=2a2=(2)2a1=2,a4=2a3=(2)3a1=22;…故找到规律an=(2)n?1a1=(2)n?1.