如图所示,在长方体ABCD-A1B1C1CD1中,AB=AD=1,AA1=2,M是棱CC1的中点。
1.连结BD1可以得到BD1平行于PO,那么问题就解决了
2.连结OM,PM,AM,CM,M为BB1的中点,利用等腰三角形的性质可以得到OM垂直于OA;
再根据计算PO^2+OM^2=PM^2得到PM垂直于PO,这样问题就解决了
3.连结OB1,根据2题的结论只要证明PB1垂直于PO即可
(1)解:因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M与C1D1所成的角,
因为A1B1⊥平面BCC1B1,所以∠A1B1M=90°,
而A1B1=1,B1M=根号2
故tan∠MA1B1=根号2,
即异面直线A1M和C1D1所成的角的正切值为根号2。
(2)证明:由A1B1⊥平面BCC1B1,BM平面BCC1B1,得A1B1⊥BM, ①
由(1)知,B1M=根号2,
又BM=根号2,B1B=2,所以,
从而BM⊥B1M, ②
又A1B1∩B1M=B1,再由①②得BM⊥平面A1B1M,
而BM平面ABM,
因此平面ABM⊥平面A1B1M。
因为AB=AD=1,AA1=2,所以BC=1,CC1=2。
因为M是CC1 中点,所以CM=C1M=1
在RT△CMB中,CB=CM,所以 ∠CMB=45°;同理 ∠C1MB1=45°;所以角B1MB=90°既BM⊥B1M。B1M在平面A1B1M上。BM在平面ABM上,所以平面ABM⊥平面A1B1M。
你是否需要了解?
如图,在长方体ABCD-A1B1C1D1中,AD等于AA1等于1,AB等于2,点E是线段A...
证明:连接EC, 则角BEC和AED都是等腰直角三角形的一个45度角, 所以DCE=90度, CE⊥DE,又因为 DD1⊥底面,DD1⊥ 底面任何一条线,所以 CE⊥ DD1, 所以 CE 垂直 (DE和DD1 构成的面) DD1E,所以过直线CE的面(D1CE)⊥面DD1E.2,因为二面角 CDD1E中, DD1 垂直 CD, DD1垂直...
如图,在长方体ABCD-A1B1C1D1中,AB=4,BC=3,AA1=2,E,F分别是楞AB,BC的...
Sabcd=4*3=12 Sade=1\/2*3*2=3 Sbef=1\/2*2*1.5=1.5 Sdcf=1\/2*4*1.5=3 Sbde=Sabcd-Sade-Sbef-Sdcf=4.5 Vd-a1ef=1\/3*Sbde*bb1=1\/3*4.5*2=3
图,在长方体abcd-a1b1c1d1中,已知da=dc=4
连A1D ∵A1D‖B1C, ∴∠BA1D是所求的角 连BD,A1B=5,A1D=5,BD=4根号2 △A1DB, 余弦定理:cos∠BA1D=(25+25-32)\/(2*5*5)=18\/50=9\/25 ∴A1B与B1C所成角为arccos9\/25 连
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,(1...
(1)以点D为坐标原点,分别以DA、DC、DD1为x轴、y轴、z轴建立空间直角坐标,设AE=x.则A1(1,0,1),D1(0,0,1),E(1,a,0),A(1,0,0),C(0,2,0).∴CE=(1,a?2,0),D1C=(0,2,?1),DD1=(0,0,1).设平面D1EC的法向量为n=(x,y,z),则...
在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的...
解:(1)设A1A=h,∵几何体ABCD-A1C1D1的体积为 403,∴VABCD-A1C1D1=VABCD-A1B1C1D1-VB-A1B1C1=403,即SABCD×h-13×S△A1B1C1×h=403,即2×2×h-13×12×2×2×h=403,解得h=4.∴A1A的长为4.(2)取A1C1的中点F,连接D1F∵长方体ABCD-A1B1C1D1,∴AA1∥DD1...
如图,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,E为BB1中点,平面AEC1交DD...
解答:解:(1)证明:由长方体ABCD-A1B1C1D1,CC1∥DD1,∵DD1?平面FGD1,CC1?平面FGD1,∴CC1∥平面FGD1.(2)以A1为原点,A1B1,A1D1,A1A所在直线分别为x、y、z轴建立如图所示的空间直角坐标系,于是,A(0,0,2),B(1,0,2),D(0,1,2),E(1,0,1),C1(1,...
如图在长方体ABCD-A1B1C1D1中AB=6,AD=3√2,AA1=2则二面角A-BD-A1的...
作AE⊥BD于E,连A'E ∵AA'⊥面ABD ∴BD⊥AA'又BD⊥AE ∴BD⊥面A'AE ∴∠A'EA就是待求二面角 ∵AB=6,AD=3√2 ∴BD=3√6 易求AE=2√3 又AA'=2 ∴∠A'EA=30° 即待求二面角为30°
如图,在长方体ABCD-A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC、A1D1的两个...
V1:V2:V3=1:4:1,又棱柱AEA1-DFD1,EBE1A1-FCF1D1,B1E1B-C1F1C的高相等,?∴S△A1AE:SA1-EBE1:S△BB1E1=1:4:1.∴S△A1AE=16S四边形A1ABB1=16×3×6=3,即12×3×AE=3.解得AE=2.在Rt△A1AE中,A1E=9+4=13,∴截面A1EFD1的面积为413.故答案为:413.
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上一点(1)求...
(1)如图, 点M到直线CC1的距离等于CD=1,则三角形MCC1面积S=12×2×1=1.点A到平面MCC1的距离为AD=1,则三棱锥A-MCC1的体积V=13S?AD=13×1×1=13.(2)当A1M+MC取得最小值时,M为DD1的中点.在长方体ABCD-A1B1C1D1中,以A为坐标原点,分别以AB、AD、AA1所在直线为x、y...
在长方体ABCD-A₁B₁C₁D₁的6个表面与6个对角面
长方体的6个面中 AA1B1B,AA1D1D,ABCD,A1B1C1D1 都与棱AA1相交 剩下的BB1C1C和DD1C1C与棱AA1平行 长方体的6个对角面中 AA1C1C,AB1C1D,A1BCD1,ABC1D1,A1B1CD 都与棱AA1相交 剩下的BB1D1D与棱AA1平行 所以,一共有3个平面与棱AA1平行 如下图:虚线所示的3个平面 ...