为什么太阳能会发电 太阳光为什么可以发电啊?

作者&投稿:窦师 2024-07-02
为什么太阳可以发电

太阳能就是太阳辐射能。在太阳里,每时每刻都进行着激裂的核裂变和核聚变反应,从而产生大量的热。太阳表面的温度达6000℃左右,内部温度高达数百万度。由于太阳的温度很高,它不断地向宇宙空间辐射能量,包括可见光,不可见光和各种微粒,总称为太阳辐射。
地球上除核能以外的一切能源,无论是煤炭、石油、天然气、水力或风力都来自太阳,全球人类目前每年能源消费的总和只相当于太阳在40分钟内照射到地球表面的能量。太阳能随处可得,不必远距离输送,而且是洁净的能源。由于这些独特的优点,太阳能发电作为新兴的产业正在迅速崛起。太阳能发电系统可分为太阳能热发电和太阳能光发电两类,太阳能热发电就是利用太阳能将水加热,使产生的蒸汽去驱动汽轮发电机组。根据热电转换方式的不同,把太阳能电站分为集中型太阳能电站和分散型太阳能电站。塔式太阳能电站是集中型的一种,即在地面上敷设大量的集热器(即反射器)阵列,在阵列中适当地点建一高塔,在塔顶设置吸热器(即锅炉),从集热器来的阳光热聚集到吸热器上,使吸热器内的工作介质温度提高,变成蒸汽,通过管道把蒸汽送到地面上的汽轮发电机组发电。
分散型太阳能电站的集热装置的特点是以一个镜体配合一个吸热器组成一个独立的单元。根据发电容量的设计要求,串、并联若干单元组成电站。
太阳能光发电是利用太阳电池组将太阳能直接转换为电能。太阳电池由单晶硅或非晶硅薄膜制成,转换效率最多为10%~17%。将太阳电池排成方阵,其总面积决定所需的功率。太阳电池发出直流电,而且要随阳光的强弱变化,所以还得配备逆变器(将直流电变为交流电)、蓄电池和相应的调控设备。太阳能光发电已广泛用于人造地球卫星和宇航设备上,也可作为孤立地区的独立电源。然而将来其造价进一步降低之后,太阳能发电将进入千家万户。
近年来人们对建造宇宙空间太阳能电站的问题进行了大量的研究。宇宙空间太阳能电站是在绕地球的同步轨道上建造卫星电站,太阳辐射能通过光电转变成电能,用微波发生装置将电能转变为微波,然后再以集束形式把微波发射到地面接收站,地面接收装置再把微波转变成电能输送到电网中。

屋顶上排满太阳能电池板,就可以实现家中用电的自给。太阳能电池板也同晶体管一样,是由半导体组成的。它的主要材料是硅,也有一些其他合金。
太阳能电池板的表面由两个性质各异的部分组成。当太阳能电池板受到光的照射时,能够把光能转变为电能,使电流从一方流向另一方。太阳能电池板就是根据这种原理设计的。
太阳能电池板只要受到阳光或灯光的照射,一般就可发出相当于所接收光能1/10的电来。为了使太阳能电池板最大限度地减少光反射,将光能转变为电能,一般在它的上面都蒙上了一层防止光反射的膜,使太阳能电池板的表面呈紫色。
不久前,科学家研制成功了一种高效的太阳能电池板。它不仅白天能提供电能,而且在夜间也可提供电力呢。

【太阳能电池发电原理】  太阳电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。
  当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了跃迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的的实质是:光子能量转换成电能的过程。 [编辑本段]【晶体硅太阳电池的制作过程】   “硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末.我们的生活中处处可见“硅”的身影和作用,晶体硅太阳电池是近15年来形成产业化最快。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。
  太阳能光伏
  光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
  太阳热能
  现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。   优点:�
  (1)普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。�
  (2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。�
  (3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。�
  (4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。�
  缺点:�
  (1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。�
  (2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。�
  (3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。�
      太阳能发电
  即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。
  太阳能离网发电系统
  太阳能离网发电系统包括1、太阳能控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,太阳能控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,太阳能控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。2、太阳能蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。3、太阳能逆变器负责把直流电转换为交流电,供交流负荷使用。太阳能逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,太阳能逆变器的高效运行也显得非常重要。
  太阳能离网发电系统主要产品分类 A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源。
  太阳能并网发电系统
  可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。
  因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。并网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。
  太阳能并网发电系统主要产品分类 A、光伏并网逆变器 B、小型风力机并网逆变器 C、大型风机变流器 (双馈变流器,全功率变流器)。 空间太阳能电源   第一个空间太阳电池载于1958年发射的Vangtuard I,体装式结构,单晶Si衬底,效率约10%(28℃)。到了1970年代,人们改善了电池结构,采用BSF、光刻技术及更好减反射膜等技术,使电池的效率增加到14%。在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。在继续研究更高性能的太阳电池,主要有两种途径:研究聚光电池和多带隙电池。
  × 空间太阳电池主要性能
  电池效率
  由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000 KWm-2)作为测试电池效率的标准光源。太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。
  ◎ 25℃,AM0条件下太阳电池效率
  电池类型 面积(cm2) 效率(%) 电池结构
  一般Si太阳电池 64cm2 14.6 单结太阳电池
  先进Si太阳电池 4cm2 20.8 单结太阳电池
  GaAs太阳电池 4cm2 21.8 单结太阳电池
  InP太阳电池 4cm2 19.9 单结太阳电池
  GaInP/GaAs 4cm2 26.9 单片叠层双结太阳电池
  GaInP/GaAs/Ge 4cm2 25.5 单片叠层双结太阳电池
  GaInP/GaAs/Ge 4cm2 27.0 单片叠层三结太阳电池
  ◎ 聚光电池
  GaAs太阳电池 0.07 24.6 100X
  GaInP/GaAs 0.25 26.4 50X,单片叠层双结太阳电池
  GaAs/GaSb 0.05 30.5 100X,机械堆叠太阳电池
  空间太阳电池在大气层外工作,在近地球轨道太阳平均辐照强度基本不变,通常称为AM0辐照,其光谱分布接近5800K黑体辐射光谱,强度1353mW/cm2。因此空间太阳电池多采用AM0光谱设计和测试。
  空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受限制的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。
  抗辐照性能
  空间太阳电池在地球大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。
  × 空间太阳电池的可靠性
  光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。× 太阳能路灯
太阳能路灯 太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。 [编辑本段]【太阳能电池】   太阳能电池发电原理
  太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。
  当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。
  太阳简介
  太阳是离地球最近的一颗恒星,也是太阳的中心天体,它的质量占太阳系总质量的99.865%。太阳也是太阳系里惟一自己发光的天体,它给地球带来光和热。如果没有太阳光的照射,地面的温度将会很快地降低到接近绝对零度。由于太阳光的照射,地面平均温度才会保持在14℃左右,形成了人类和绝大部分生物生存的条件。除了原子能、地热和火山爆发的能量外,地面上大部分能源均直接或间接同太阳有关。
  太阳是一个主要由氢和氦组成的炽热的气体火球,半径为6.96×105km(是地球半径的109倍),质量约为1.99×1027t(是地球质量的33万倍),平均密度约为地球的1/4。太阳表面的有效温度为5762K,而内部中心区域的温度则高达几千万度。太阳的能量主要来源于氢聚变成氦的聚变反应,每秒有6.57×1011kg的氢聚合生成6.53×1011kg的氦,连续产生3.90×1023kW能量。这些能量以电磁波的形式,以3×105km/s的速度穿越太空射向四面八方。地球只接受到太阳总辐射的二十二亿分之一,即有1.77×1014kW达到地球大气层上边缘(“上界”),由于穿越大气层时的衰减,最后约8.5×1013kW到达地球表面,这个数量相当于全世界发电量的几十万倍。
  根据目前太阳产生的核能速率估算,氢的储量足够维持600亿年,而地球内部组织因热核反应聚合成氦,它的寿命约为50亿年,因此,从这个意义上讲,可以说太阳的能量是取之不尽、用之不竭的。
  太阳的结构和能量传递方式简要说明如下。
  太阳的质量很大,在太阳自身的重力作用下,太阳物质向核心聚集,核心中心的密度和温度很高,使得能够发生原子核反应。这些核反应是太阳的能源,所产生的能量连续不断地向空间辐射,并且控制着太阳的活动。根据各种间接和直接的资料,认为太阳从中心到边缘可分为核反应区、辐射区、对流区和太阳大气。
  (1)核反应区
  在太阳半径25%(即0.25R)的区域内,是太阳的核心,集中了太阳一半以上的质量。此处温度大约1500万度(K),压力约为2500亿大气压(1atm=101325Pa),密度接近158g/cm3。这部分产生的能量占太阳产生的总能量的99%,并以对流和辐射方式向外辐射。氢聚合时放出伽玛射线,这种射线通过较冷区域时,消耗能量,增加波长,变成X射线或紫外线及可见光。
  (2)辐射区
  在核反应区的外面是辐射区,所属范围从0.25~0.8R,温度下降到13万度,密度下降为0.079g/cm3。在太阳核心产生的能量通过这个区域由辐射传输出去。
  (3)对流区
  在辐射区的外面是对流区(对流层),所属范围从0.8~1.0R,温度下降为5000K,密度为10-8g/cm3。在对流区内,能量主要靠对流传播。对流区及其里面的部分是看不见的,它们的性质只能靠同观测相符合的理论计算来确定。
  (4)太阳大气
  大致可以分为光球、色球、日冕等层次,各层次的物理性质有明显区别。太阳大气的最底层称为光球,太阳的全部光能几乎全从这个层次发出。太阳的连续光谱基本上就是光球的光谱,太阳光谱内的吸收线基本上也是在这一层内形成的。光球的厚度约为500km。色球是太阳大气的中层,是光球向外的延伸,一直可延伸到几千公里的高度。太阳大气的最外层称为日冕,是冕是极端稀薄的气体壳,可以延伸到几个太阳半径之远。严格说来,上述太阳大气的分层仅有形式的意义,实际上各层之间并不存在着明显的界限,它们的温度、密度随着高度是连续地改变的。
  可见,太阳并不是一个一定温度的黑体,而是许多层不同波长放射、吸收的辐射体。不过,在描述太阳时,通常将太阳看作温度为6000K、波长为0.3~3.0μm的黑色辐射体。
  太阳能发电
  未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。目前已实用的主要有以下两种。
  ①光—热—电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。
  ②光—电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。  希望能对你有帮助!!!!!内容很多,还有其他你需要的
!!!

能量转换呀,只要找到合适的方法能量之间就可以互相转换,太阳能电池就是这种方法之一。如果你能找到更好的方法,说不定还能得诺贝尔奖呢

太阳能转变为热能再转变为电能

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流
太阳能电池办是由半导体材料组成的,当阳光照射时,其中有的原子会失去电子,由于半导体的性质,使这些电子都向同一方向运动,于是形成电流!
太阳能发电板一平方米平均光照6小时能发多少电啊`~

能量转换


你是否需要了解?

太阳能发电的原理是什么?
答:太阳能发电的原理,是利用太阳的辐射能,通过水或其他介质和装置系统,使之转换成电能。转换为电能有两种基本途径,一种是光把太阳辐射能转换为热能,即太阳热发电。另一种通过光电器件将太阳光直接转换为电能,即太阳光发电。热发电又有两种类型。一种是太阳热动力发电,即采用反射镜把阳光聚集起来加热水...

为什么太阳能会发电
答:【太阳能电池发电原理】 太阳电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的...

为什么太阳能会发电
答:1、 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置。光生伏特效应的基本过程:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使产生电子-空穴对。2、 界面层临近的电子和空穴在复合之前,将经由空间电荷的电场作用...

太阳能发电的原理是什么?
答:1、光吸收:太阳能电池板表面覆盖着光吸收层,通常使用硅等半导体材料,其特性是当光线照射到其中时,能够吸收光的能量。2、光电效应:光吸收层中的光能激发了材料中的电子,将它们从低能级提升到高能级。这个过程称为光电效应,其中光能转化为电能。3、电子流动:激发的电子在光吸收层内自由移动,形成电...

太阳能电池的工作原理
答:太阳能电池发电是根据特定材料的光电性质制成的。黑体(如太阳)辐射出不同波长(对应于不同频率)的电磁波,如红外线、紫外线、可见光等等。当这些射线照射在不同导体或半导体上,光子与导体或半导体中的自由电子作用产生电流。射线的波长越短,频率越高,所具有的能量就越高,例如紫外线所具有的能量要远远...

为什么太阳光能够变成电?
答:太阳能光热发电与常规火力发电原理是类似的,只是热能不是来自煤炭的燃烧,而是来自太阳光,因此非常洁净。与太阳能光热发电不同,光伏发电直接将阳光转变成电。科学家发现了一种能吸收阳光产生电能的半导体材料,它的这种特殊本领称为光伏效应。光伏效应涉及两个最基本的过程,一个是电子—空穴对的产生,另...

十万个为什么:太阳能发电是怎样的
答:这时,如果用电路连通,就会产生直流电流,这些电流储存到蓄电池,再通过固态电子功率调节装置转换成所需的交流电提供给各种负载。所以晚上没有太阳时,负载是一样可以正常工作的。太阳能电池发电系统可分为太阳能热发电和太阳能光发电两种。太阳能热发电就是利 用太阳能将水加热,使产生的蒸汽去驱除汽轮机...

为什么太阳能发电??
答:太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置。光生伏特效应的基本过程:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使产生电子-空穴对。界面层临近的电子和空穴在复合之前,将经由空间电荷的电场作用被相互分别...

太阳能发电是什么原理
答:当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。光伏发电是利用太阳能级半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。

太阳光为什么可以发电啊?
答:太阳光也是一种能量,我们可以将它转化为电能。我们现在用的电大多靠火力发电取得,即燃烧煤炭,这是将化学能转化为电能,风能发电就是靠风的动能转化为电能,太阳光是一种光能,所有不同形式的能量都是可以互相转换的