重大突破!美国麻省理工学院研制出新型碳纳米管微处理器

作者&投稿:况周 2024-09-21

导读

背景

晶体管,是人类现代 历史 中最伟大的发明之一。现代电子设备例如电脑、智能手机、智能硬件等,都离不开晶体管。在集成电路技术出现以后,大量的晶体管可被封装在一片指甲盖大小的芯片内。这种晶体管由源极、漏极和位于它们之间的栅极所组成,电流从源极流入漏极,栅极则起到控制电流开关的作用。

著名的摩尔定律指出:“当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。”正如摩尔定律所预测的,如今晶体管的尺寸在不断缩小,单颗芯片上集成的晶体管数量在不断增加,可以开展越来越复杂的运算。

但是近年来,摩尔定律正在面临严峻挑战。传统的晶体管主要都是由硅材料制成的。对于硅晶体管来说,7纳米堪称物理极限。一旦硅晶体管的尺寸低于这个数字,由于“量子隧道效应”,电子将不再受制于欧姆定律,穿越了本来无法穿越的势垒。这样会引起集成电路的漏电现象,让晶体管变得不再可靠。

为了解决上述问题,让摩尔定律继续焕发生机与活力,产业界与科学界的有识之士们开始积极寻找新材料,这些材料的目标就是取代硅,生产出尺寸更小、性能更佳、功耗更低的新一代晶体管。

例如,笔者曾经介绍过美国劳伦斯伯克利国家实验室利用纳米碳管与二硫化钼研制出全球最小的晶体管,其晶体管制程仅为1纳米。

又例如,加拿大麦吉尔大学和蒙特利尔大学的研究表明,黑磷有望成为晶体管的一种非常好的候选材料。此外,其他的二维材料,例如石墨烯、六方氮化硼、二硒化钨等都可以用于打造新型晶体管。

制造碳纳米管场效应晶体管(CNFET)已成为打造新一代计算机的主要目标之一。研究表明,CNFETs 具有十倍于硅的能量效率,以及更快的运行速度。但是大规模生产时,这些晶体管通常会具有许多影响性能的缺陷,显得不切实际。

该微处理器基于 RISC-V 开源芯片架构,该架构具有一组微处理器可以执行的指令。研究人员设计的微处理器可以准确地执行全部指令集,也执行了修改版的经典“Hello, World!(你好,世界!)”程序,打印出:“Hello, World! I am RV16XNano, made from CNTs.(你好,世界!我是 RV16XNano,由碳纳米管制成。)”。

电气工程与计算科学(EECS)系助理教授、微系统技术实验室成员、论文合著者 Max M. Shulaker 表示:“迄今为止,这是由新兴纳米技术制造出的最先进的芯片,它有望实现高性能且高能效的计算。硅具有局限性。所以,如果我们想要在计算领域继续取得进展,碳纳米管是最有希望克服这些局限的方法之一。研究论文彻底革新了我们用碳纳米管制造芯片的方式。”

这款微处理器是 Shulaker 及其他研究人员在6年前设计的一个迭代版本基础上开发的,当时的版本只有178个 CNFETs,并只能在单比特数据上运行。从那时起,Shulaker 和他在麻省理工学院的同事们就开始应对碳纳米管微处理器制造过程中的三个独特的挑战:材料缺陷、制造缺陷和功能问题。Gage Hills 负责大部分的处理器设计工作,而 Christian Lau 则负责大部分的制造工作。

Shulaker 表示,多年来,碳纳米管的固有缺陷一直是这个领域的“祸根”。理想情况下,CNFETs 需要半导体特性来打开或者关闭其导电性,分别与比特位是1或0相对应。但不可避免的是,一小部分的碳纳米管将会具有金属性,从而减缓或者阻止晶体管的开关。为了避免这些失败,先进的电路将需要纯度达99.999999%的碳纳米管,而这在现今几乎是不可能生产出来的。

研究人员提出了一项称为 DREAM(“designing resiliency against metallic CNTs”的缩写,即设计对抗金属性的碳纳米管)的技术。这项技术以一种方式放置金属性的 CNFETs,使之不会干扰计算。在这个过程中,他们将严格的纯度要求放宽了四个数量级,或者说1万倍,这意味着他们只需要纯度达99.99%的碳纳米管,而目前这是可以制备出来的。

基本上,设计电路需要一个由连接到晶体管上不同的逻辑门组成的库,而这些逻辑门可以组合到一起,就像将字母拼接成单词一样创造加法器和乘法器。研究人员发现,金属碳纳米管对于这些逻辑门的不同组合的影响是不同的。例如,逻辑门A中的单个金属碳纳米管,可能会破坏逻辑门A与逻辑门B之间的连接。但是逻辑门B中的几个金属碳纳米管却不会影响它们的连接。

在芯片设计中,有许多方法可以在电路上实现代码。研究人员进行了模拟,以找到所有不同的逻辑门组合,它们对于任何金属碳纳米管来说可能是“鲁棒性的”或者是“非鲁棒性的”。然后,他们定制了一个芯片设计程序,自动寻找最不可能受到金属碳纳米管影响的组合。当设计一个新型芯片时,程序将只利用“鲁棒”的组合,并忽略有漏洞的组合。

Shulaker 表示:“‘DREAM’这个双关语非常有意义,因为它是大家梦寐以求的解决方案。这个方法使得我们可以购买现成的碳纳米管,将它们放到晶圆上,像平常一样去构造我们的电路,不需要做其他任何特殊的事情。”

CNFET 制造始于在溶液中将碳纳米管沉积到具有预先设计好的晶体管结构的晶圆上。然而,一些碳纳米管会不可避免地随机粘在一起,形成大束,就像意大利面串成小球一样,在芯片上形成了大颗粒污染物。

为了清除这种污染物,研究人员发明了 RINSE (removal of incubated nanotubes through selective exfoliation,用选择性剥离的方法去除孵化的纳米管)技术。晶圆会通过一种促进碳纳米管粘合的试剂进行预处理。然后,晶圆被涂上某种聚合物,并浸入一种特殊的溶剂中。这样一来可以冲走聚合物,而这些聚合物只能将带走大束的碳纳米管,而单个碳纳米管仍会粘附在晶圆上。与其他类似方法相比,该技术可使芯片上的颗粒密度降低约250倍。

最后,研究人员解决了 CNFET 常见的功能性问题。二进制计算需要两种类型的晶体管:“N”型晶体管,打开代表比特位为1,关闭代表比特位为0;“P”型晶体管则相反。传统意义上说,用碳纳米管制造这两种类型的晶体管是极具挑战性的任务,因为通常会产生性能各异的晶体管。为了解决这个问题,研究人员开发出一项称为 MIXED(metal interface engineering crossed with electrostatic doping,与静电掺杂交叉的金属界面工程)的技术,它能精确地调整晶体管的功能和优化。

在这项技术中,他们把某些金属(铂或钛)附着在每个晶体管上,这样就可以将晶体管固定为P或者N。然后,他们通过原子层沉积法将 CNFET 涂覆到某种氧化物化合物上,从而调整晶体管的特性,以满足特定应用的需求。例如,服务器通常需要运行速度快但耗电多的晶体管。从另一方面来说,可穿戴设备和医疗植入物可能需要速度较慢、功耗较低的晶体管。

未来

他们的主要目标是将该芯片推向现实世界。为实现该目的,研究人员现在已经开始通过支持这项研究的美国国防部高等研究计划局的一个项目,将他们的制造技术应用到一家硅芯片铸造厂中。虽然现在还没有人能断言,完全由碳纳米管制成的芯片何时将会上市。但 Shulaker 表示:“它可能在五年内得以实现。我们认为这不再是一个能否实现的问题,而只是何时实现的问题。

关键字

参考资料

【1】Gage Hills et al. Modern microprocessor built from complementary carbon nanotube transistors, Nature (2019). DOI: 10.1038/s41586-019-1493-8

【2】http://news.mit.edu/2019/carbon-nanotubes-microprocessor-0828




你是否需要了解?

学术界捷足先登,哈佛领导的物理学家团队实现可编程最大规模量子模拟器...
哈佛-麻省理工学院联合超冷原子中心的物理学家团队,通过他们的合作,已经研发出一款里程碑式的创新——可编程量子模拟器,这款设备能操控256个量子比特,标志着大规模量子计算机研发进程中的重大突破。乔治·瓦斯梅尔·莱弗特物理学教授,哈佛量子计划的联合主任Mikhail Lukin,作为这项研究的主要作者之一,表...

革命式电池基本概况
美国麻省理工学院的科研团队取得了重大突破,研发出一款革新性电池,它能在短短十秒钟内完成手机的充电过程,大幅度缩短了传统充电方式需要数小时的时间。这款电池的充电速度是传统电池的百倍,不仅适用于手机,还适用于手提电脑、iPod、数码相机,甚至电动汽车,极大地提高了充电效率。据预测,这种革命性电池...

碳纳米管16位处理器如何制造并运行程序?
结论:美国麻省理工学院的科学家突破性地利用碳纳米管成功制造出了16位处理器,这一成果预示着新一代晶体管技术的革新。尽管它目前的性能还不足以与硅基处理器匹敌,但与早期的碳纳米管处理器相比,这无疑是一个巨大的进步。碳纳米管,这种一维量子材料,因其独特的结构——径向纳米级,轴向微米级,以...

申盛打破黑体辐射的普朗克定律
2009年7月30日,美国麻省理工学院(MIT)机械工程系华裔教授陈刚及其团队取得了一项重大突破。他们的研究首次打破“黑体辐射定律”,证实了在物体极度近距时,热力传导的强度可以高达定律预测的千倍。这一成果得到了《世界日报》、联合报以及中国多家门户网站的广泛关注和报道。陈刚的研究团队利用二氧化硅制成的...

MIT团队:开发自动化假新闻检测器|技术前沿洞察
在科技日新月异的今天,麻省理工学院的研究团队在多个领域取得了重要突破。他们开发了一种自动化假新闻检测器,通过深度学习模型揭示了假新闻与真新闻语言的微妙差异,旨在提高新闻真实性辨别能力。同时,5G技术方面,Verizon成功测试了边缘计算,将5G延迟减半,为实时应用如远程手术提供可能。AT&T和A10 ...

美国科学家如何制造出能运行“你好,世界”程序的碳纳米管16位处理器...
结论:美国麻省理工的科学家成功突破了晶体管技术的瓶颈,利用碳纳米管制造出了16位处理器,展示了碳纳米管在新一代半导体领域的潜力。在电子计算领域,晶体管起着基石作用,但随着技术发展,硅基半导体在纳米级别遇到挑战。碳纳米管,以其独特的巴基管结构和一维量子特性,被视为未来的希望。它由六边形...

二钌富瓦烯用途
近期,麻省理工学院的研究人员揭开了二钌富瓦烯的新用途,这一创新为太阳能技术的未来发展带来了重大突破。他们开发出一种被称为“可充电热量电池”的新型装置,旨在高效利用太阳能并实现长时间储存热量。这种金属的独特性质使其在为房屋供暖方面展现出巨大潜力。论文的主要作者杰弗里·格罗斯曼强调,二钌富...

量子雷达原理
在最新的科研突破中,纽约罗彻斯特大学的研究团队展示了他们开发的一种新型侦测技术,能够破解频率干扰等常见的反侦查手段。这项技术的核心是利用光子的量子特性,实现了先进的反隐身技术。麻省理工学院的科学家对此评价,这种技术依赖于光子的量子特性,一旦进行测量,其特性就会被破坏。通过这种方式,可以伪造...

数控机床是哪个国家最先发明的?
20世纪40年代末,美国开始研究数控机床,1952年,美国麻省理工学院(mit)伺服机构实验室成功研制出第一台数控铣床,并于1957年投入使用。这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。...

重大突破!美国麻省理工学院研制出新型碳纳米管微处理器
从那时起,Shulaker 和他在麻省理工学院的同事们就开始应对碳纳米管微处理器制造过程中的三个独特的挑战:材料缺陷、制造缺陷和功能问题。Gage Hills 负责大部分的处理器设计工作,而 Christian Lau 则负责大部分的制造工作。 Shulaker 表示,多年来,碳纳米管的固有缺陷一直是这个领域的“祸根”。理想情况下,CNFETs ...